Chemiluminescent Oxidation Reaction of Eu²⁺ Ions with H₂O₂

Marian Elbanowski*, Jacek Wierzchowski**, Maria Paetz*, and Janusz Sławiński**

Z. Naturforsch. 38a, 808-810 (1983); received January 24, 1983

A series of chemiluminescence (CL) investigations of rare earth ions in redox reactions has been initiated. The study of oxidation reactions of Eu^{2+} – uncomplexed and complexed by ethylenediaminetetraacetic acid (EDTA) – with H_2O_2 has revealed a distinct CL of Eu^{3+} with two-phasic kinetics, controlled by pH and the concentration of H_2O_2 .

Introduction

Lanthanide ions, mainly europium and terbium ions, are used as luminescent probes in structural investigations of biological systems [1–4]. Less numerous, however, are studies concerning chemiluminescence (CL) involving lanthanide ions [5–8] and connected with biological molecules [9, 10]. In this paper investigations on a chemiluminescent system containing Eu²⁺ ions and H_2O_2 are presented.

Experimental

The experiments were carried out with systems containing Eu²⁺ ions, uncomplexed or complexed by ethylenediaminetetraacetic acid (EDTA) in a phosphate buffer solution of different pH values. Because of the hydrolysis of EuCl₂ and EuCl₃, in the uncomplexed systems the pH value was limited to pH \leq 5.3. In the complexed systems we used the range 3 < pH < 8.5. Eu²⁺ was obtained by reducing Eu³⁺ with McCoy's method [11].

Immediately after the reduction of Eu³⁺ the Eu²⁺ was complexed with EDTA.

The chemiluminescence begins when the Eu^{2+} solution is put into a cell containing H_2O_2 and the phosphate buffer solution. The temperature was 295 K and inert gas passed the cell to provide anaerobic conditions during the whole reaction time.

This work has been supported within the research project MR 19

Reprint requests to M. Elbanowski, Department of Rare Earths, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland.

The spectral distribution of the CL was measured combining the single-photon counting and the cut-off filter method [12]. An EMI 9558QB photomultiplier, sensitive in the range 180–800 nm, was used. Details of the method are given elsewhere [13].

Results and Discussion

In the systems with uncomplexed Eu^{2+} ions, at pH = 1.5 or 5.3, immediately after the mixing of the Eu^{2+} solution with H_2O_2 a weak short lived CL appears (duration time about 45 s). The decay time of the CL is comparable with the oxidation reaction time.

The integral intensities and decay times of this short lived CL of uncomplexed solutions with different Eu^{2+} and H_2O_2 concentrations are shown in Table 1. The CL intensity increases with growing Eu^{2+} concentration whereas the decay time decreases with growing H_2O_2 concentration.

Table 1. Integral intensity $\sum I \Delta t$ and half-decay time $T_{1/2}$, s (in brackets), of a short-lived chemiluminescence in the oxidation reaction of uncomplexed Eu²⁺ with H₂O₂ under various conditions.

[H ₂ O ₂] mmole/dm ³ [Eu ²⁺] mmole/dm ³	20	40	60
4	0.15 (8) * 0.75 (8)		
10	0.55(8)*		1.0 (3)*
20	1.9 (6) * 2.7 (9)		2.0 (3) *
40		4.0 (5.5) *	4.4 (4)
60		5.2 (5) * 5.9 (7.5)	5.6 (4)

^{*} Results obtained at pH = 1.5; without asterisk at pH = 5.3.

 $0340\text{-}4811 \text{ }/\text{ }83\text{ }/\text{ }0700\text{-}0808 \$ 01.3 \text{ }0/0. - Please order a reprint rather than making your own copy.}$

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland Lizenz.

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

^{*} Department of Rare Earths, Faculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań. ** Department of Physics, Academy of Agriculture, Wojska Polskiego 38/42, 60-637 Poznań, Poland.

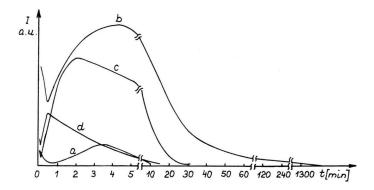


Fig. 1. Total chemiluminescence (CL) intensity as a function of time during oxidation of Eu^{2+} by H_2O_2 : a) uncomplexed Eu^{2+} (16 mmole/dm³) and H_2O_2 (20 mmole/dm³), pH=5.3 (the intensity of CL multiplied $\times 10^2$); b) complexed Eu^{2+} (4 mmole/dm³) by EDTA (40 mmole/dm³), H_2O_2 (20 mmole/dm³) and phosphate buffer (30 mmole/dm³), pH=7.5; c) complexed Eu^{2+} (4 mmole/dm³) by EDTA (40 mmole/dm³), H_2O_2 (20 mmole/dm³) and phosphate buffer (30 mmole/dm³) and additionally 1% n-butanol, pH=7.5; d) complexed Eu^{2+} (4 mmole/dm³) by EDTA (40 mmole/dm³) and phosphate buffer (30 mmole/dm³) in the presence of O_2 , pH=7.5.

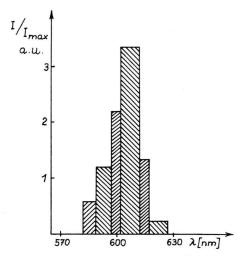


Fig. 2. Spectral distribution of Eu³⁺ chemiluminescence generated in the oxidation of Eu²⁺ by H₂O₂. The reaction mixture contains: Eu²⁺ (4 mmole/dm³), EDTA (40 mmole/dm³), H_2 O₂ (20 mmole/dm³) and phosphate buffer (30 mmole/dm³), pH = 7.5.

In solutions of pH 5 and at an excess of H_2O_2 , 1 min after the start of the reaction also a weak long lived emission appears, which decays during about 10 min (Figure 1a).

In solutions of Eu^{2+} complexed with EDTA, at pH = 3 the short lived CL appears immediately after the mixing with H_2O_2 , just as before.

At higher pH values (5-8.5) also a long lived component occurs, analogous to the uncomplexed solutions, but with much higher intensity and much longer decay time (Figure 1 b).

The spectral distribution of the CL of the complexed system is shown in Figure 2. The strong maximum at about 610 nm indicates that the observed CL is emitted by the Eu³⁺ ions.

The short lived CL observed in the case of uncomplexed and complexed Eu²⁺ systems evidently originates from the two following reactions giving excited Eu³⁺ ions:

$$Eu^{2+} + H_2O_2 \rightarrow Eu^{3+} + OH^- + OH^*$$
, (1)

$$OH^{\bullet} + Eu^{2+} \rightarrow Eu^{3+} + OH^{-}$$
. (2)

Reaction (1) is analogous to the Fenton reaction [14] as a source of OH* radicals. Reaction (1) has 1.6 eV of free enthalpy (ΔG°) . The ΔG° value of reaction (2) is 2.6 eV. The ΔG° values are cal-

culated from the redox potentials of the radical reactions given for pH = 0 [15] and from the E^0 value -0.43 V for Eu³⁺/Eu²⁺ [16]. Taking into account the CL spectrum as well as the calculated values of ΔG^0 , one may conclude that the excitation of Eu³⁺ to the luminescent level 5D_0 (2.10 eV) is possible. In the redox system of Ru²⁺/Ru³⁺ with 2,2'-bipyridine, the excited product was identified as a metal (Ru²⁺) – to ligand charge-transfer triplet [17].

The long lived CL is a result of consecutive reactions initiated by the OH* free radicals. This ascertainment is justified by the observed dependence of the intensity and the decay time of the CL on the added n-butanol as a scavenger of OH* radicals (Figure 1c). When the complexed system was not deaerated, the intensity and the decay time of the CL were markedly decreased. This may be connected with the direct oxidation of Eu²⁺ ions by atmospheric oxygen and by oxygen from the decomposition of H₂O₂ (Figure 1d). The mechanism of the long lived CL, including also the role of OH* radicals, is at present under study.

The strong dependence of the CL intensity on the experimental conditions observed in this work indicates the applicability of lanthanides in biological investigations. In the studies which have

been carried out till now, Eu3+ ions have served as acceptors of electronic excitation energy generated chemically and/or biochemically [9, 10].

The results of this work show that the europium ions may be excited in the oxidation reaction with the participation of free radicals.

- [1] Handbook on the Physics and Chemistry of Rare Earths, ed. K. A. Gschneidner, Jr. and L. Eyring, North-Holland Publ. Comp., Amsterdam 1979, p. 515.
- [2] J. de Jersey, P. J. Morley, and R. B. Martin, Biophys. Chem. 13, 233 (1981).
- [3] W. de W. Horrocks, Jr. and W. E. Collier, J. Amer. Chem. Soc. 103, 2856 (1981).
- [4] Topics in Inorganic and Physical Chemistry, Springer-Verlag, Berlin 1982, p. 79.
- [5] P. D. Wildes and E. H. White, J. Amer. Chem. Soc. 93,6286 (1971).
- [6] R. E. Hemingway, Su-Moon Park, and A. J. Bard, J. Amer. Chem. Soc. 97, 200 (1975).
- [7] V. P. Kazakov, Chemiluminescence of Uranyl, Lanthanides and d-elements, Nauka, Moscow 1980, p. 145.
- [8] H. C. Brayman, D. R. Fischell, and T. A. Cool, J. Chem. Phys. 73, 4247 (1980).

- [9] V. S. Sharov, T. B. Suslova, A. I. Deev, and Yu. A. Vladimirov, Biofizika 25, 923 (1980).
- [10] V. S. Sharov and Yu. A. Vladimirov, Biofizika 27, 327 (1982).
- [11] H. N. McCoy, J. Amer. Chem. Soc. 57, 1756 (1935).
- [12] R. F. Vassil'ev, In Bioluminescence, A. I. Zhuravlev, ed., Trans. Moscow Soc. Naturalists, Vol. 21, Moscow 1965, p. 170.
- [13] J. Sławiński, W. Gałęzowski, and M. Elbanowski, Biochim. Biophys. Acta 637, 130 (1981).
- [14] C. Walling, Acc. Chem. Res. 8, 125 (1975).[15] W. H. Koppenol, Photochem. Photobiol. 28, 431
- (1978). [16] R. C. Vickery, Analytical Chemistry of the Rare Earths, Pergamon, Oxford 1961, p. 132.
 [17] R. C. Class and I. R. Faulkner, J. Phys. Chem. 85,
- 1160 (1981).